

LECS2024 BELGIUM 5-6 December

GREENER ECS JOINING FORCES IN EUROPE Erika Györvary, Morgan Monroe 05.12.2024

INCREASED USE OF ELECTRICAL COMPONENTS AND SYSTEMS (ECS)

BY 2030, THE WORLDWIDE SEMICONDUCTORS (SC) INDUSTRY MANUFACTURING CAPACITY SHOULD NEARLY DOUBLE AS OF TODAY

EU Semicon capacity increase by factor of 4-5!

Emissions & waste & energy need increase accordingly!

Source: SIA, Applied Materials - SM

TWO PROBLEMS: EMISSIONS AND E-WASTE

-

Unsustainable Materials

Unsustainable Practices Cause for Concern Amount of E-waste Generated and Collected Furope 17.6 7.53 342.8% Oceania 6.66 🗊 41.4% Americas 4.2 🗊 30% Asia 0.76 🗊 11.8% Africa 0.018 🗊 0.7% 10 15 **Global E-waste Global semiconductor** recycling rate: lifetime CO₂ footprint **≈ 22.3%** ≈ 500 Mt

E-waste values based on 2021 estimates as reported in the Global F-Waste Monitor 2024. In 2021 manufactured semiconductor devices lifetime CC Dipsiji in BCAeneos S 🕬 🔤 Inside

THE EUROPEAN CLIMATE LAW SETS AMBITIOUS GOALS:

A 55% REDUCTION IN GREENHOUSE GAS EMISSIONS BY 2030 AND CLIMATE NEUTRALITY BY 2050

EPoSS: ECS Sustainability & Environmental Footprint (<u>https://zenodo.org/records/11487615</u>)

SEMICONDUCTOR FAB EMISSIONS

COME MAINLY FROM PROCESS GASES AND ELECTRICITY CONSUMPTION CO₂-equivalent emissions for typical fab profile,¹% share

Scope 3 upstream Scope 1 Scope 2 100 Other Facilities Other (including subfab) energy 80 Process gases Capital expenditures 60 A MID-SIZED Share Transport within Tools FOUNDRY USES scope Purchased raw material 40 and services 20 0 20 40 60 80 100 0 Share by scope

Excluding scope 3 downstream. Emissions averaged across 200-millimeter (mm) and 300-mm semiconductor fabs.

ABOUT AS MUCH ENERGY AS A TOWN OF 10,000 PEOPLE!

McKinsey

& Company

ENVIRONMENTAL IMPACT OF KEY PROCESS GASES

Chipsjü

Aeneas 🚝 EPOSS.

Inside

REDUCTION OF GREENHOUSE GASES VS IMPLEMENTATION COSTS

CHIPS JU 2024 Focus Topic

McKinsev

& Company

UNDERSTANDING WHAT TO IMPROVE: LIFE-CYCLE ANALYSIS

Chipsjü

Aeneas 😚 Eposs.

SUSTAINABLE MANUFACTURING

SUSTAINABLE MANUFACTURING

Conventional/Greener Manufacturing

> 2.1 Printed sensors and circuits 2.3 Printed antennas for wireless power and communication 2.4 Printed energy harvesting and storage 2.5 Printed display

Image from Khan et al 2019

Alternative

Manufacturing

Image from Fraunhofer ISC, CeSMA

Hybrid

Electronics

PATHS FOR IMPROVING SUSTAINABILITY OF ELECTRONICS

Eliminate noncritical components

> Eliminate bulky reader Switch comms & power to phone

Reduce and miniaturize

Simplify system to only essentials Minimize # of components

Switch to greener materials and methods

Switch to sustainable packaging Print antennas & sensors

Design for disassembly, reuse

Make reusable parts easy to recover and recycle

Design for disposability

ECS2024

Make non-reusable parts safe and easy to discard

 $m_{glucometer} = 60g$

SAMSUNG

HE& CHIPS JU PROJECTS ON SUSTAINABLE ECS

Chipsjij

Aeneas 🦃

GREEN ELECTRONICS @ CHIPS JU

SUSTRONICS

Circular electronic devices Sustainable manufacturing for electronics

> Environmentally compatible single-use electronics

Reduce, Reliability, Reuse, Repair, Refurbish, Recycle for zero e-waste. Wearable patches, Recyclable batterie, PCBs,...

GENESIS

Generate in EU a sustainable industry for semiconductors

Chipsjü

Aeneas 😤 Eposs.

6	Eco-friendly	Reduce E-waste	Green manufacturing
Ŷ	Eco-design, additive manufacturing, bio- based materials	Implementation of 6Rs for electronics design, Design for Disassembly	Materials, processes, monitoring, abatement
¢, ¢	Chips JU 2022	Chips JU 2022	Chips JU 2024
Ē	Ongoing	Ongoing	Starting

SUSTRONICS Sustainable and green electronics for circular economy

- 46 partners from 11 countries
- 30 industry partners throughout value chain
- 3 Years starting 1.6.2023
- <u>www.sustronics.eu</u>
- Coordinator: Philips, Technical manager: VTT

Ecosystem demonstrating how electronics industry can benefit from sustainability and circularity

3 use cases, 10 pilots, led by industry

Circular electronic devices

impact calculated

Status at M18

Sustainable

manufacturing for

electronics

• First prototypes of pilots integrated and their environmental

Environmentally compatible singleuse electronics

42% of consumers prefer <u>environmentally friendly</u> electronic devices, but 53% think there is a financial barrier¹

SustrOnics

Chips_{JU}

Environmental impact of <u>substrate</u> can decrease up to **75%** with sustainable alternatives²

- Development of circular business models on-going to support commercialisation
 New sustainable materials, processes, components and
- New sustainable materials, processes, components and devices available

¹SUSTRONICS consumer study (1000 consumers from 5 countries)

²SUSTRONICS LCA calculations

EECONE – EUROPEAN ECOSYSTEM FOR GREEN ELECTRONICS

- Over 50 partners
- 16 countries
- 3 years starting 01.07.2023
- Coordinator: Infineon

Guided by the 6R principles we develop the technology for a zero-waste future of electronic components and systems.

GENESIS - GENERATE IN EUROPE A SUSTAINABLE INDUSTRY FOR SEMICONDUCTORS

ightarrow Improve the entire manufacturing sustainability chain value

Fab level : process & equipment

GASES & CHEMICAL

(litho, bonding,

Low GWP gas (etch

eapt)

FFS2024

& clean)

PFAS free materials

- 60 partners from 12 countries
 - 32 industrial and 12 SME partners
 - 9 RTO and 7 academic partners
- 3 Years

Develop CRM

valorization solutions

recycling &

Coordinator: CEA-LETI Support: CSEM

2 💮 5 4 WASTE MONITORING & PROCESS **AIR EMISSIONS** FINAL TREATMENT TREATMENT Technology Reduce aqueous Reduce gas By-products & sustainable emission emission wastes sensing & alternatives Abatement Water abatement monitoring

H2 gas carrier re-

use (MOCVD)

SubFab & facilities

- (FEOL- BEOL Packaging) Filtration and adsorption solutions
 - (PFAS...)
 - Reuse

Chipstii

EPOSS WG GREEN ECS

SELECT PROGRAM SUSTAINABLE ELECTRONICS PROJECTS AT CSEM

CSEM internal

- EFORE ('23) & ENFRED ('24)
- SUMON ('23-'25)
- GREENPOCKET ('23) & COPPERFIELD ('24)

Swiss academic and industrial partners

- GREENSPACK (EMPA, EPFL)
- ELUSIVE (HEArC, Sonceboz)

EU partners

- SUSTRONICS
- EECONE
- TESLA

- \rightarrow LCA of PCB and whole IoT device
- \rightarrow Disposable AND sustainable
- \rightarrow Feasibility of sustainable AM

- \rightarrow Fully biodegradable alternatives
- \rightarrow Triggerable PCB decomposition

- \rightarrow Disposable and sustainable alternatives
- \rightarrow Hybrid re-use / disposable alternatives
- \rightarrow Fully biodegradable alternatives

e csem

FACING THE CHALLENGES OF OUR TIME

Dr. Erika Györvary Lead of EU Affairs Erika.Gyoervary@csem.ch