

LLEGIUM 5-6 December

Horizon Europe ICOS "International Cooperation on Semiconductors"

Francis Balestra - CNRS / Grenoble INP/ SiNANO Institute December 5th, 2024

ICOS: International Cooperation On Semiconductors

 ICOS Project starts in January 2023 for three years, funded by the Horizon Europe research program.

Technical co-Coordinator

An ambitious project in the framework of the European strategy for semiconductors.

ICOS Partners & Advisory Boards

ASSOCIATIONS &

INTERNATIONAL ADVISORY BOARD

- Semiconductors & Semiconductor-based photonics are pivotal technologies for almost all existing industrial sectors, as demonstrated by the recent chips shortages
- International cooperation is key for speeding up technological innovation (e.g. ITRS/IRDS, IPSR-I, ECS-SRIA, NEREID), reducing cost by avoiding duplicated research, strengthening complex supply and value chains, and is encouraged by the new strategies of leading semiconductor countries
 - => To build **balanced semiconductor partnerships** with like-minded countries
 - => To set out cooperative framework on *initiatives of mutual interest*
 - => To identify and support the establishment of the most promising scientific international collaborations
 - => To support the growth of the European Semiconductor industry through **focused research alliances** based on awareness of advanced research activities
 - => To strengthen **Europe's position** in global value chains in this area and to contribute to the **EU Chips Act, Green deal and Digital Agenda**

Investigated countries:

- The United States of America
- India
- The Republic of Korea
- Japan
- Taiwan
- Singapore
- China
- Canada, Malaysia (for some analysis)

 Advanced computing & Advanced functionalities: sensing, RF & optical communications, optical devices, energy harvesting, power devices, ...

ICOS Topics for cooperation (average of the 7 countries)

Coperation Cooperation in the semiconductor value chain

ICES Topics for cooperation in the semiconductor value chain (average of the 7 countries)

13

Aeneas 🧐 EPoss. 🎦 Inside

Chipsjü

Analysis of the Semiconductor industrial ecosystems

ICOS International Cooperation on Semiconductors **Where Europe is leading**

Source: Mordor Intelligence, 2022

د المنافع 🕼 Aeneas 🕼 Aeneas 🕼 Aeneas المنافع ال

ICOS International Cooperation Semiconductors **Semiconductor growth forecasts by 2030 by end-market**

ICES Europe's market shares in chip production for different sectors in 2023 (in %)

Source: European Council of the EU, 2023

ICOS Market and production shares of EU players in 2022

In comparison, the EU account for 17% of the global GDP in 2022²⁹.

Source: DECISION Etudes & Conseil

ICES Description of the semiconductor demand in the EU by application and products

IC Semiconductor trade partners of the EU (by location)

Giobal spread of silicon photonics end-users

Industries served:

- Agrifood
- Automotive
- □ HPC
- Industrial sensing
- Medical Diagnostics
- Optical IO
- Photonics AI
- Quantum Computing
- Telecom/datacom

An analysis based on 125 companies developing SiPhenabled products

Canada China EU ROW United States

ICES International Cooperation Semiconductors **Market share and production share across the value chain: USA example**

Source: DECISION Etudes & Conseil

ICOS The USA's main strengths against the EU

	Key Applications	Industry contenders	Industry leaders	
Microprocessor Design and manufacturing	AI/HPC Automotive (ADAS)	KALRAY 15 other THE POWER OF MORE Start-ups		
Advanced front-end manufacturing	AI/HPC Automotive (ADAS)	infineon xfab	(intel)	
Back-end equipment & Manufacturing / Advanced packaging	All applications	Infineon Imec Besi AT&S	TERADYNE (intel)	
Photomask	All applications	ZEISS Manofabrication	MATERIALS.	
Front-end equipment (except EUV photolithography)	In particular etching & cleaning with LAM Research)	Deposition ASM IXTRON Metrology & ASML	REAL TENCOR	
Nand Flash & DRAM Design & Manufacturing	Mobile phones, PC Consumer electronics		KIOXIA Western Digital	

Source: DECISION Etudes & Conseil

Identification of the main technologies for International Cooperation

"Advanced Functionalities"

- Concept 1- Motion Sensors
- Concept 2 Pressure Sensors
- Concept 3 Advanced Drive Assistance Systems
- Concept 4 Environmental Sensors
- Concept 5 Agri-food Sensors
- Concept 6 Sensors for Medical and Healthcare Applications
- Concept 7 Molecular Diagnostics
- Concept 8 Native CMOS-based physical sensor interfaces
- Concept 9 Sensors for energy (new)
- Concept 10 Sensors for Smart Cities (new)

ICOS Sensor Technology Market by Sector

Global values 2024 → 2030

Healthcare: \$15.6 → \$37.7 billion

Energy: \$10.9 → \$26.1 billion

Automotive:\$18.7 → \$43 billion

Smart Cities:\$14.8 → \$35 billion

Environment: \$7.5 → \$17.6 billion

Agriculture: \$5 → \$15 billion

Sources: grandviewresearch.com mordorintelligence.com market.us emergenresearch.com theinsightpartners.com

Main Sensor Technology Markets

1. MEMS (Micro-Electro-Mechanical Systems): This segment is expected to hold a significant share of the market, driven by its applications in consumer electronics, automotive, and industrial sectors. **USD 35 billion** by 2030

2. CMOS (Complementary Metal-Oxide-Semiconductor): CMOS sensors, primarily used in imaging applications, are anticipated to grow substantially. USD 25 billion by 2030

3. Optical: With the increasing demand for miniaturized and integrated sensor solutions, **USD 20 billion** by 2030

ICOS Energy Harvesting technologies

ICOS Smart power technologies

ICOS Photonics Integrated circuits

C S Challenges for Photonics Ecosystems

- □ Low volume: need more applications
- □ Getting the best materials (Heterogeneous integration)
- □ Design and modelling (first-time-right capabilities)
- Rapid prototyping (bypass long chip iteration cycles)
- □ Packaging (optical, electrical, mechanical, thermal, RF)
- Combining photonics and electronics

ICONS Challenges & possible solutions: Advanced Functionalities

- Innovation in **new, highly sensitive and more versatile sensors** requiring more advanced sustainable (bio)materials innovation and integration
- For energy harvesters the improvement of the performance/ efficiency is as important as the development of "green" materials
- Wide band gap (e.g. SiC, GaN) and ultrawide band gap materials (e.g. AlN, GaOx, diamond) for power devices
- Heterogeneous integration of best materials for target application
- Hybrid integration of various functional chips
- Advanced design tools, including multi-physics simulation for first-time-right modelling capabilities
- **Rapid prototyping** to bypass long chip iteration cycles (e.g. PDK, ADK availability)
- Packaging that meets multiple design requirements such as optical, electrical, mechanical, thermal, RF, (bio-)fouling etc.

Identification of the main technologies for International Cooperation

"Advanced Computing"

ICOS Challenges for future compute systems

PPAC=Power-Performance-Area-Cost

Global data generation (actual & forecast)

Chipsjü

Aeneas 🦃 EPOSS.

Inside

Compute needs for Machine Learning (ML) continue to grow 255

ESSERC 2024 Workshop Emerging technologies in Advanced Computation, Advanced Functionalities, Ground-breaking Technologies: Impact on International Cooperation

ICOS The required gain in energy efficiency

>1000x by 2030

CMOS scaling

Memory technologies

Disruptive Computing

Chiplet & 3D System

ICOS More Moore Roadmap

2 complementing routes for system scaling

ICCS FD-SOI Technology Roadmap

ICOS 2D Atomic Channels: Next generation logic devices

Characteristic length of short channel FETs:

$$\lambda = \sqrt{\frac{\epsilon_{ch}}{\epsilon_{ox}}} t_{ch} \cdot tox$$

Expect reduced short channel effects in planar devices Ultra-thin materials

Choice of bandgaps and band alignment No/Few dangling bonds at interfaces

ICOS Emerging Non-Volatile Memories

	NOR FLASH	MRAM	PCRAM	OxRAM	FeRAM (PZT)	FeRAM (HfO ₂)
Programming power	~200pJ/bit	~20pJ/bit	~300pJ/bit	~100pJ/bit	~10fJ/bit	~10fJ/bit
				14ns @ 2.5V		
Write speed	20 µs	20 ns	10-100 ns	10-100 ns	<100ns	(SONY) 4ns @ 4.8V (LETI)
Endurance	10 ⁵ - 10 ⁶	10 ⁶⁻ 10 ¹⁵	10 ⁸	10 ⁵ – 10 ⁶ on 16 kbit	> 1015	> 10 ¹¹ single device 10 ⁶ - 10 ⁷ on 16 kbit
Retention	> 125°C	85°C - 165 °C	165°C	> 150°C	125°C	125°C
Extra masks	Very high (>10)	Limited (3-5)	Limited (3-5)	Low (2)	Low (2)	Low (2)
Process flow	Complex	Medium	Medium	Simple	Simple	Simple
Multi-Level Cell	Yes	No	Yes	Yes	No	No
Scalability	Bad	Medium	High	High	Medium	Poor (2D) High (3D)

ICOS Monolithic and Heterogeneous integration

- R&D very strong in all areas of compute
- Unique strong position in EUV lithography
- In general, industrial EU players lacking to take up R&D

- Strong industrial activity in most areas of compute
- Weaker academic activity on traditional logic scaling
- Strong R&D in new materials, heterogeneous integration and memory

Construction Challenges & possible solutions: Advanced Computing

- Classical' Logic Scaling Roadmap beyond FinFET technology that extends devices structures through sub nm nodes (e.g., GAA and CFET architectures)
- Exploration of 'Fully Depleted SOI' technology for Power Efficient Analog and RF applications
- Exploration of **alternative channel materials** (e.g., 2D materials)
- Extension of the scaling of BEOL technologies, through the use of Ru, Airgap or Graphene-based metallization, by reducing the associated RC network
- Added BEOL functionality through the introduction of new materials such as 2D, oxide semiconductors and ferroics
- Exploration of the use of BEOL Non-Volatile Memories (using for example resistive RAM such as FeRAM, MRAM, PCRAM) to supplement/replace charge-based memories, for in-memory computing (eNVM), and for Power Efficient Neuromorphic-based architectures
- Photonic chips for optical interconnects and quantum information processing
- Demonstration of the capability of the '**Buried Power Rail delivery'** to decongest the interconnection density that is becoming the most limiting factor for the scaling at 2nm and below
- Enablement of the **High-NA EUV lithography** for the patterning of 2nm nodes and beyond
- Usage of 3D integration to desegregate the classical large area chips into chiplets that will be much more power efficient when reconstruct using 3D integration design flow and associated toolbox

In regards to:

- the complexity of the global value chains in the semiconductor area
- the high interdependencies between the different regions of the globe
- consortium partners representing the main European stakeholders and to their International Networks

ICOS is a central instrument to generate impact for the European ecosystems and to support the EC for international cooperation

- => Provide advice to the European Commission on joint research and other cooperation initiatives on specific topics with selected leading semiconductor countries
- => Offer support in their implementation, based on well documented analysis of value chains, important technologies and mutual advantages of potential collaboration
- => Implement EU policy by organizing joint international workshops on defined topics
- => Strengthen European capacities in key parts of digital and future supply and value chains
- => Allow to invest in early discovery and industrial uptake of new technologies

Thank you for your attention

Acknowledgements: All ICOS Partners

Francis Balestra, ICOS Coordinator

Francis.balestra@grenoble-inp.fr

icos-semiconductors.eu

This project has received funding from the European Union's Horizon Europe research and innovation programme under GA N° 101092562

icos-semiconductors.eu

